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Abstract: Several modifiable risk factors for neurodegeneration and dementia have been identified,
although individuals vary in their vulnerability despite a similar risk of exposure. This difference
in vulnerability could be explained at least in part by the variability in DNA repair mechanisms’
efficiency between individuals. Therefore, the aim of this study was to test associations between
documented, prevalent genetic variation (single nucleotide polymorphism, SNP) in DNA repair genes,
cognitive function, and brain structure. Community-living participants (n = 488,159; 56.54 years
(8.09); 54.2% female) taking part in the UK Biobank study and for whom cognitive and genetic
measures were available were included. SNPs in base excision repair (BER) genes of the bifunctional
DNA glycosylases OGG1 (rs1052133, rs104893751), NEIL1 (rs7402844, rs5745906), NEIL2 (rs6601606),
NEIL3 (rs10013040, rs13112390, rs13112358, rs1395479), MUTYH (rs34612342, rs200165598), NTHL1
(rs150766139, rs2516739) were considered. Cognitive measures included fluid intelligence, the
symbol–digit matching task, visual matching, and trail-making. Hierarchical regression and latent
class analyses were used to test the associations between SNPs and cognitive measures. Associations
between SNPs and brain measures were also tested in a subset of 39,060 participants. Statistically
significant associations with cognition were detected for 12 out of the 13 SNPs analyzed. The strongest
effects amounted to a 1–6% difference in cognitive function detected for NEIL1 (rs7402844), NEIL2
(rs6601606), and NTHL1 (rs2516739). Associations varied by age and sex, with stronger effects
detected in middle-aged women. Weaker associations with brain measures were also detected.
Variability in some BER genes is associated with cognitive function and brain structure and may
explain variability in the risk for neurodegeneration and dementia.

Keywords: DNA repair; cognitive decline; brain ageing; oxidative stress; inflammation; single
nucleotide polymorphism

1. Introduction

Cognitive decline and brain ageing are acute concerns in a global population predicted
to age rapidly in the coming decades. Progressive changes in cognitive function and brain
health are known to be associated with an increased risk of developing dementia later
in life [1]. As dementia is a major cause of disease burden in developed countries and a
looming problem in developing countries where life expectancy is quickly rising [2], factors
that may accelerate or inhibit the development of cognitive decline have major social and
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economic implications. There is, therefore, a need to better understand the contributors
to brain and cognitive ageing and to more precisely identify those at risk to better direct
limited clinical and risk reduction interventions.

Healthy ageing and longevity in humans are modulated by a combination of genetic
and non-genetic factors. To address these concerns, increased attention has been directed at
modifiable risk factors (e.g., cardiovascular disease, diabetes, obesity, depression, sedentary
lifestyle, unhealthy diet, smoking, etc.), which are thought to contribute significantly (~40%)
to brain ageing and cognitive decline, as well as other chronic conditions [3–5]. However, it
has remained a puzzle as to why some individuals with a high-risk factor exposure live
long and relatively healthy lives while others with comparably low or similar exposures
experience greater morbidity and premature death. A plausible explanation is that dif-
ferent individuals are more or less vulnerable to certain risk factors and the underlying
pathological processes of these risk factors. As longevity exhibits high heritability [6],
investigating how genetic variability may contribute to promoting health and reducing
the risk of diseases may improve our understanding of underlying biological mechanisms.
However, to date, only a few genes and genetic loci have been identified for this trait [7],
and therefore the study of genes contributing to longevity and vulnerability to disease is a
developing science.

Major physiopathological mechanisms thought to underlie the deleterious effects
of risk factors for cognitive decline, neurodegeneration, and ageing more generally, are
oxidative stress (OS) and chronic inflammation [8–10]. OS and inflammation can contribute
in various ways to disease and ageing processes, of which DNA damage is a major demon-
strated pathway [11–13]. DNA repair is a primary hallmark of ageing [14]; therefore, a
possible explanation for variability in vulnerability to risk factor exposure is that the effi-
ciency of DNA repair mechanisms varies enough between individuals to have a substantive
impact on their health trajectories and vulnerability to neurodegenerative diseases [15,16].

The type of DNA damage caused by OS includes oxidized DNA nucleotides, single-
strand breaks (SSBs), double-strand breaks (DSBs), and telomere shortening [17,18]. To
prevent catastrophic outcomes linked to such damage (e.g., cellular death, cancers), humans
possess a number of DNA repair mechanisms [19,20]. They include homologous recombi-
nation, non-homologous end joining, base excision repair (BER), nucleotide excision repair
(NER), and mismatch repair (MMR), as well as DNA damage detection mechanisms such as
Poly ADP Ribose Polymerase (PARP). There is variation (single nucleotide polymorphism;
SNP) in the genes that code for these repair mechanisms between individuals; however,
SNPs have mostly been investigated in relation to their role in cancers [21]. Based on
the limited existing evidence, BER and NER are the repair mechanisms whose genetic
variability appears to be most relevant to the brain and cognitive health [22,23]. This is
because the brain is the organ with the highest metabolic rate and, as such, produces a
high amount of reactive oxygen species (ROS) [24,25]. As in other parts of the body, a large
proportion of ROS are buffered by antioxidants. However, the remainder may contribute to
proportionally higher OS levels and related DNA damage. Indeed, elevated levels of DNA
damage in the CNS of animal models have been reported [15]. Moreover, in post-mitotic
cells, such as neurons, DNA damage is not mitigated by the more robust DNA repair
mechanisms involved in cell replication but by the less reliable DNA repair mechanisms
involved in transcription, to which BER and NER also contribute [26]. Thus, it would be
expected that variability in efficiency, particularly for BER, given it is the major pathway
to repair oxidative DNA damage [15,26,27], leads to more or less damage accumulating
in the brain. Such differences in damage accumulation and increased vulnerability to ox-
idative agents have been demonstrated in cell cultures [28], and variability in BER genetic
variants was found to be associated with increased DNA damage in Alzheimer’s disease
patients compared to the controls [29]. However, we currently do not know how much
such variability contributes to age-related differences in cognitive function or brain health.
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The objective of this study is to determine whether genetic variability (SNPs) in
the DNA repair mechanism contributing most to resolving OS-related damage (BER), is
associated with cerebral and cognitive health.

2. Materials and Methods
2.1. Study Population

All participants taking part in the UK Biobank study (UKB) were considered for
inclusion. The UKB has been described elsewhere in detail [21,22], but briefly, the UKB is a
prospective cohort study of 502,655 participants aged 37 to 73 years at the baseline who
were assessed across 22 assessment centers around the UK between 2006 and 2019.

Participants for whom genomic data (n = 488,377), at least one cognitive measure
(n = 496,542; numbers varied for different measures), and essential covariates (age, sex,
education; n = 492,236) were available were included for analysis providing a total sample
of 488,013 participants (Supplementary Figure S1). In addition, a subset of participants
who undertook a brain scan (n = 39,060) contributed to neuroimaging analyses. This
study follows the Strengthening the Reporting of Observational Studies in Epidemiology
(STROBE) guidelines [23].

2.2. DNA Repair Single Nucleotide Polymorphism

BER SNPs were selected in two steps. First, all SNPs of BER genes with published
significant associations with cognitive or neurological outcomes documented in SNPedia
were identified (OGG1, NEIL1-2-3, MUTYH, NTHL1). Second, those identified SNPs
which were also available in the UK Biobank genome-wide data archive were considered
for analysis (n = 17; OGG1: rs1052133, rs104893751 NEIL1: rs7402844, rs5745906 NEIL2:
rs6601606 NEIL3: rs10013040, rs13112390, rs13112358, rs1395479 MUTYH: rs34612342,
rs200165598, rs77542170, rs200844166, rs200495564, rs121908381 NTHL1: rs150766139,
rs2516739). Of those, four were excluded due to low prevalence (n < 50; rs77542170,
rs200844166, rs200495564, rs121908381), leaving 13 SNPs for analysis (Supplementary
Table S1). The SNPs selected for analysis and the function of the genes they belong to are
presented in Table 1.

Table 1. Summary of the base excision repair genes investigated, their functional role, and the specific
SNPs considered in the present study.

Genes Function in Base Excision Repair SNPs

OGG1
Detection and excision of pyrimidines in

double-stranded DNA, including the most frequently
occurring oxidized DNA lesion, 8-oxoguanine.

rs1052133
rs104893751

NEIL1

Detection and excision of pyrimidines, 8-oxoguanine,
and formamidopyrimidine from both single and

double-stranded DNA, preferably in bubble-structured
DNA, as well as in close proximity to another DNA

lesion. Contributes particularly to
transcription-associated DNA repair.

rs7402844
rs5745906

NEIL2
Similar to NEIL1, however, its expression is cell-cycle

independent with a particular affinity for
cytosine-derived lesions such as 5-hydroxyuracil.

rs6601606

NEIL3

Similar to NEIL1 and NEIL2, but mostly expressed in
development, e.g., in brain regions rich in progenitor
cells (subventricular zone, hippocampus, cerebellum),

decreasing with age.

rs10013040
rs13112390
rs13112358
rs1395479
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Table 1. Cont.

Genes Function in Base Excision Repair SNPs

MUTYH

Provides protection against the mispairing of adenosine
with 8-oxoguanine by removing the adenosine base and

prevents the accumulation of 8-oxoguanine lesions.
MUTYH can also remove other sources of lesions, such

as oxidized adenines.

rs34612342
rs200165598

NHTHL1 Detection and excision of pyrimidines and purines.
Specific protective action against telomeric lesions.

rs150766139
rs2516739

Bold: OGG1: 8-Oxoguanine glycosylase; NEIL1/2/3: NEI endonuclease VII like 1/2/3; MUTYH: mutY DNA
glycosylase (human); NHTHL1: Nth Like DNA Glycosylase 1.

2.3. Cognitive Measures

Fluid intelligence (FIQ; UKB field 20191): Participants responded to as many as
14 multiple-choice questions, testing as many numerical, logic, arithmetic, and syntac-
tic skills as possible in two minutes. Scores were computed as the sum of correct answers
(range 0–14).

Symbol-digit matching test (SDMT; UKB field 20159): Participants were presented with
a series of grids in which symbols had to be matched to numbers according to a key pre-
sented on the screen. Scores were the number of correct answers (range 0–103).

Pair matching test (MATCH; UKB field 20023): Participants were presented with 6 or
12 cards on a screen with their faces concealed. Each pair was revealed one by one for 5 s
and then turned over again. Scores were the time (milliseconds) taken to correctly identify
matches (range 63–2000).

Trail-Making 1 and 2 (TRAIL1 and TRAIL2; UKB fields 20156 and 20157): The partic-
ipant was presented with sets of digits (TRAIL1) or digits and letters (TRAIL2) in circles
scattered around the screen. In TRAIL1, they were asked to sequentially click on digits. In
TRAIL2, they were asked to sequentially click on digits and letters, alternating between
each (i.e., A—1, B—2, etc.). Scores were the time (seconds) to complete the numeric or
α-numeric paths (range TRAIL1: 13-734; TRAIL2: 20-746).

2.4. Brain Measures
2.4.1. Image Acquisition

Participants underwent an MRI scan during the second (2014+) visit at one of three
imaging centers using the same scanner (3T Siemens Skyra, running VD13A SP4 using a
32-channel head coil; Siemens Healthcare, Erlangen, Germany). Detailed UKB imaging
protocols are provided online [21]. Briefly, all participants were imaged with a T1-weighted
3D magnetization-prepared rapid acquisition gradient echo sequence over a five-minute
duration in the sagittal orientation (resolution = 1 × 1 × 1 mm; field of view = 208 × 256 ×
256 matrix).

2.4.2. Segmentation and Image Analysis

FreeSurfer was used to segment and analyze neuroimaging data (version 6.0.5) [27].
The FreeSurfer pipeline has been extensively described elsewhere [28]. In summary, it
involves motion correction, transformation to the Talairach image space, inhomogeneity
correction, non-brain tissue removal using a hybrid watershed, volumetric segmenta-
tion [29,30], and cortical surface reconstruction and parcellation [21,31]. The regions of
interest (ROIs) selected a priori to the analysis were total grey matter (GM), total white mat-
ter (WM), the left (LHC) and right hippocampus (RHC), and white matter lesions (WMLs)
because these areas are either highly vulnerable to risk factors associated with accelerated
ageing or because they are likely to best capture diffuse effects across the brain [30–32].
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2.5. Socio-Demographic and Health Measures

Age, sex, education, smoking, alcohol intake, type 2 diabetes, and heart problems
were obtained via self-report. Education was recoded into primary, secondary, professional
certificate/diploma, tertiary, or unknown. Body mass index (BMI) was computed with the
following formula: weight (kg)/height (m2).

2.6. Statistical Analysis

Statistical analyses were computed using the R statistical package (version 4.2.3) in
RStudio (version 2023.03.0). Associations between selected SNPs and cognitive outcomes
were tested through linear regression analyses controlling for age, sex, and education.
Univariate models testing each SNP separately were first conducted to determine whether
individual SNPs were significantly associated with outcome measures. Next, multivariate
models, including all SNPs with significant associations detected in univariate analyses
with one or more cognitive outcomes, were conducted. The models were progressively
reduced (using stepwise deletion) to only include those SNPs that remained significant.
This was performed to identify the most influential SNPs. To further determine whether
pairs of SNPs interacted together, SNPs with significant associations were combined pair-
wise by creating categorical variables reflecting all allele permutations, and additional
regression models were computed only for the cognitive measure with the largest sample
size (MATCH). Next, significant SNPs were classified as protective if they were associated
with better cognitive function or as a risk if they were associated with poorer cognitive
function. Based on this classification, the following three indexes were computed: a protec-
tive index (protect) computed as the count of protective SNPs an individual has, a harm
index (harm) computed as the count of risk SNPs, and an overall risk index computed
by subtracting the protective index from the harm index (risk) and shifting its range so
the lowest risk was 0. Associations between the three indexes, cognitive outcomes, and
brain measures were tested with similar linear models to those used in univariate analyses
(brain analyses were also controlled for ICV) while also including interaction terms for
age categories (middle-age: <60 years; older-age: ≥60 years) and sex. Finally, to further
determine whether influential SNPs were clustered in groups of individuals and to assess
whether such clusters were differentially associated with cognitive and brain health, a
latent class analysis (LCA) was conducted with the poLCA R package (version 1.6.0.1) [33].
The LCA was restricted to the 12 SNPs for which one or more significant associations
were detected, and SNP variables were transformed into binary factors (none vs. one/two
alleles); pilot analyses showed that this produced essentially the same results with a better
fit. Associations between identified classes and the cognitive and brain measures were then
tested with the same type of regression models as those used in multivariate analyses. α
was set at p < 0.05 and corrected for multiple comparisons (Bonferroni).

3. Results

Participants’ demographic characteristics are presented in Table 2, with ethnic origin
information in Table S2 and the bivariate Pearson correlation between outcome variables
and covariates in Figure S1.

Table 2. Participants’ characteristics for female, male, and all participants. Sample sizes are presented
in square brackets. Standard deviation (SD) for continuous measures and percentages for count
measures are presented in round brackets. BMI: body mass index.

Female [n = 264,576] Male [n = 223,437] Total [n = 488,013]

Age (years)

Mean (SD) 56.36 (8.00) 56.75 (8.20) 56.54 (8.09)

Education (highest
qualification)

Primary 44,727 (16.9%) 38,546 (17.3%) 83,273 (17.1%)
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Table 2. Cont.

Female [n = 264,576] Male [n = 223,437] Total [n = 488,013]

Secondary 107,069 (40.5%) 76,355 (34.2%) 183,424 (37.6%)

Prof
certificate/diploma 27,067 (10.2%) 30,204 (13.5%) 57,271 (11.7%)

Tertiary 82,457 (31.2%) 75,318 (33.7%) 157,775 (32.3%)

Unknown 3256 (1.2%) 3014 (1.3%) 6270 (1.3%)

Smoke (ever)

No 117,855 (44.8%) 77,159 (34.7%) 195,014 (40.2%)

Yes 145,436 (55.2%) 145,119 (65.3%) 290,555 (59.8%)

Alcohol

Current 238,953 (90.3%) 208,754 (93.4%) 447,707 (91.7%)

Never 15,359 (5.8%) 6193 (2.8%) 21,552 (4.4%)

Past 9631 (3.6%) 7893 (3.5%) 17,524 (3.6%)

Unknown 633 (0.2%) 597 (0.3%) 1230 (0.3%)

BMI (kg/m2)

Mean (SD) 27.07 (5.18) 27.83 (4.24) 27.42 (4.79)

Range 12.12–74.68 12.81–68.41 12.12–74.68

Diabetes

No 253,463 (95.8%) 206,618 (92.5%) 460,081 (94.3%)

Yes 10,177 (3.8%) 15,718 (7.0%) 25,895 (5.3%)

Unknown 936 (0.4%) 1101 (0.5%) 2037 (0.4%)

3.1. SNPs—Cognition Associations

Univariate associations between SNPs and cognitive measures presented in Supple-
mentary Tables S3–S15 demonstrate that most SNPs have significant associations with one
or more outcomes. Five SNPs (OGG1: rs104893751; NEIL1: rs7402844; NEIL3: rs13112390,
rs13112358, rs1395479) were associated with better function and were labeled “protective”.
Three SNPs (OGG1: rs1052133; NEIL2: rs6601606; NTHL1: rs2516739) were associated with
lower function and were labeled “harmful”. Two SNPs (NTHL1: rs150766139; MUTYH:
rs200165598) did not contribute to any significant associations.

In the multivariate analysis, the reduced model (Table 3) shows that after the stepwise
deletion of non-significant predictors, eight SNPs (protective: NEIL1: rs7402844, NEIL3:
rs13112358, NEIL3: rs1395479; harmful: OGG1: rs1052133, NEIL2: rs6601606, NTHL1:
rs2516739, MUTYH: rs200165598) were found to be independently associated with cognitive
function. For most SNPs, the presence of the variant in the two alleles (homozygosity)
produced stronger effects ranging in magnitude between 27.5% and 355.7% above those
observed when the variant was present in a single allele (heterozygosity). The strongest
and numerous associations were detected for the MATCH measure, which had the largest
sample size, and for the FIQ measure.

Associations between the pairwise combination of significant SNPs identified in the
multivariate model and cognitive measures are presented in Supplementary Tables S16–S36.
The SNP combination resulted mostly in a subtractive effect, while some combinations
resulted in apparently additive and synergetic effects. The strongest subtractive effects
were detected for NEIL1: rs7402844 and OGG1: 1052133, OGG1: rs1052133 and NEIL3:
rs13112358, OGG1: rs1052133 and rs13954791, NEIL1: rs7402844 and NEIL2: rs6601606,
NEIL1: rs7402844 and NTHL1: rs2516739, NTHL1: rs2516739 and NEIL3: rs13112358; the
strongest additive effects were detected for NEIL1: rs7402844 and NEIL3: rs13112358, NEIL1:
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rs7402844 and NEIL3: rs1395479; the strongest synergetic effects were detected for NEIL2:
rs6601606 and OGG1: rs1052133, NEIL2: rs6601606 and NTHL1: rs2516739.

Table 3. Associations between SNPs and cognitive outcomes assessed in a single multivariate model,
including only those SNPs with significant univariate associations detected in analyses testing the
same effects in individual SNPs one at a time (see Supplementary Tables S3–S15). Digits (1 or 2) in
brackets indicate the effect of the heterozygote and homozygote carriers (vs. non-carriers) of each
SNP except for rs200165598, for which only heterozygote carriers were present in the sample. The
statistics reported include unstandardized β estimates and p values.

Cognitive Measures

SNP Variants (1/2
Alleles vs. None) FIQ SDMT MATCH TRAIL1 TRAIL2

rs1052133(1) 0.669
p = 0.052

rs1052133(2) 2.322 **
p = 0.002

rs7402844(1) 0.080 ** −8.690 *** −0.661 *
p = 0.001 p < 0.00001 p = 0.034

rs7402844(2) 0.102 *** −10.890 *** −0.921 **
p = 0.00001 p = 0.000 p = 0.003

rs6601606(1) −0.187 *** 6.889 ***
p < 0.00001 p < 0.00001

rs6601606(2) −1.559 *** 24.501 **
p < 0.00001 p = 0.0004

rs13112358(1) 0.081 ** −2.537 **
p = 0.001 p = 0.0004

rs13112358(2) 0.094 ** −4.148 ***
p = 0.0001 p < 0.00001

rs2516739(1) −0.003 0.899 *
p = 0.811 p = 0.010

rs2516739(2) −0.079 ** 5.669 ***
p = 0.003 p < 0.00001

rs1395479(1) 0.115 ** −2.809 ***
p = 0.0001 p < 0.00001

rs1395479(2) 0.077 −3.556 ***
p = 0.163 p < 0.00001

rs200165598(1) 18.339 **
p = 0.003

Constant 3.536 *** 16.337 *** 614.845 *** 47.156 *** 87.129 ***
p < 0.00001 p < 0.00001 p < 0.00001 p < 0.00001 p < 0.00001

Observations 120,453 115,893 478,185 101,909 101,788
Log Likelihood −248,761 −342,715 −2,935,306 −415,735 −466,588
Akaike Inf. Crit. 497,552 685,449 5,870,652 831,487 933,196

Note: * p < 0.05; ** p < 0.0035; *** p < 0.00001.

3.2. Protect, Harm, and Risk Indexes

The characteristics of the protect, harm, and risk indexes are presented in Supplemen-
tary Table S37. Associations between these indexes, as well as their interactions with age
and sex, and the MATCH cognitive measure (selected due to a larger sample size), are
presented in Table 4. All indexes were significantly associated with cognitive function in the
predicted direction. In addition, significant two-way interactions with age were detected
for all indexes such that higher risk was associated with lower performance (Figure 1). No
significant interactions were detected for sex.
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Table 4. Associations between the protect, harm, and risk indexes and performance on the MATCH
cognitive measure. The protect index is the total number of SNPs with a protective effect carried by
each individual, while the harm index is the total number of SNPs with a harmful effect, and the
risk index is the difference between the protect and harm indexes. The statistics reported include
unstandardized β estimates and p values.

Dependent Variable
MATCH

Protect Harm Risk

Age (years) 3.136 *** 3.668 *** 3.978 ***
p < 0.00001 p < 0.00001 p < 0.00001

Sex (Male) −16.503 *** −18.113 *** −17.666 ***
p < 0.00001 p < 0.00001 p < 0.00001

Index −2.050 *** 1.315 *** 1.684 ***
p < 0.00001 p = 0.00005 p < 0.00001

Age × Index 0.135 *** −0.75 *** −0.109 ***
p < 0.00001 p = 0.008 p < 0.00001

Sex × Index −0.387 0.162 0.364
p = 0.295 p = 0.722 p = 0.204

Constant 609.515 *** 600.920 *** 596.709 ***
p < 0.00001 p < 0.00001 p < 0.00001

Observations 476,240 480,300 473,791
Log Likelihood −2,923,622 −2,948,533 −2,908,645
Akaike Inf. Crit. 5,847,265 5,897,086 5,817,310

Note: * p < 0.1; ** p < 0.05; *** p < 0.01.
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Figure 1. Three-way interactions between the risk index, age category (middle-age > 60 years vs. 
older-age ≥ 60 years), sex, and (a) the FIQ and (b) MATCH cognitive measures. For FIQ, the signifi-
cant interaction indicates that performance decreases more steeply with an increasing risk index for 
middle-aged women than for older women or men. For MATCH, the significant interaction indi-
cates that response time increases more steeply for older men than middle-aged men. Shaded areas 
indicate 95% confidence intervals.  
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Figure 1. Three-way interactions between the risk index, age category (middle-age > 60 years
vs. older-age ≥ 60 years), sex, and (a) the FIQ and (b) MATCH cognitive measures. For FIQ, the
significant interaction indicates that performance decreases more steeply with an increasing risk
index for middle-aged women than for older women or men. For MATCH, the significant interaction
indicates that response time increases more steeply for older men than middle-aged men. Shaded
areas indicate 95% confidence intervals.

3.3. SNPs—Brain Associations

The reduced multivariate model testing associations between the twelve significant
SNPs identified above and brain volumes (Table 5) shows that after the stepwise removal
of non-significant predictors, 2 SNPs (NEIL3: rs13112390, rs13112358; 1 protective and
1 harmful) were significantly associated with the total GM only, with the presence of the
variant in the two alleles producing stronger associations.

In addition, significant associations were detected between the risk index and most
brain volumes (Table S38), revealing three-way interactions between risk, age, and sex.
These interactions indicate that while the risk is not substantially associated with brain
volume in middle-aged participants, it is positively associated with LHC, RHC, GM, and
WMH (in the opposite direction) volumes in females and negatively in males (see also
Figure 2).
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Table 5. Associations between SNPs and brain volumes assessed in a single multivariate model,
including only those SNPs with significant univariate associations and cognitive measures (see
Supplementary Results). Digits (1 or 2) in brackets indicate the effect of the heterozygote and
homozygote carriers (vs. non-carriers) of each SNP except for rs34612342 and rs200495564, for
which only heterozygote carriers were present in the MRI subsample. The statistics reported include
unstandardized β estimates and p values. Left (LHC) and right (RHC) hippocampus; grey (GM) and
white (WM) matter; white matter hyperintensities (WMHs).

Brain Volumes

SNP Variants
(1/2 Alleles vs.

None)
LHC RHC GM WM WMH

Age (years) −12.031 *** −12.582 *** −753.194 *** −138.614 *** 135.550 ***
p < 0.00001 p < 0.00001 p < 0.00001 p < 0.00001 p < 0.00001

Sex (Male) 3.885 −14.718 *** 3426.919 *** −4741.967 *** −163.435 ***
p = 0.321 p = 0.0004 p < 0.00001 p < 0.00001 p < 0.00001

rs34612342(1) 43.861 * 34.667 2674.997 *
p = 0.052 p = 0.145 p = 0.071

rs200495564(1) −472.157 −137.377
p = 0.126 p = 0.674

rs13112390(1) −2476.289 ***
p = 0.009

rs13112390(2) −3008.684 ***
p = 0.004

rs13112358(1) 1914.805 **
p = 0.022

rs13112358(2) 2233.274 **
p = 0.019

rs6601606(1) −40.886
p = 0.598

rs6601606(2) 1219.892 *
p = 0.059

Constant 1473.881 *** 1503.877 *** 104,839.200 *** −81,903.510 *** −2138.101 ***
p < 0.00001 p < 0.00001 p < 0.00001 p < 0.00001 p < 0.00001

Observations 38,991 38,991 38,781 39,025 39,044
Log Likelihood −278,780 −280,983 −438,138 −442,333.300 −362,143
Akaike Inf. Crit. 557,572 561,979 876,293 884,676.600 724,299

Note: * p < 0.1; ** p < 0.05; *** p < 0.01.

3.4. Latent Class Analyses

A two-class model identifying one larger class (95.4%) and a smaller class (4.6%) was
selected as it best fitted the data and because the three-class model did not converge (see
Supplementary Methods). Class membership was primarily based on three SNPs (NEIL3:
rs13112358, rs13112390, rs10013040), which were present in class 2 but either not or to a
much lesser extent in class 1. Other SNPs contributed little to defining class membership.
Associations between classes and cognitive outcomes are presented in Supplementary
Table S39 and indicate that the second class was associated with an overall worse cognitive
function (lower FIQ, higher MATCH scores). In addition, strong three-way interactions
with age and sex were detected, indicating that a stronger effect is present in middle-aged
women (Supplementary Figure S2), following a similar pattern to that observed above in
relation to the risk measure. No main effect was present for brain measures, but three-way
interactions with age and sex were also detected, which are suggestive of effects, trending
in the opposite direction for LHC, RHC, and GM in men and women, which also appear to
be modulated by age (Supplementary Table S40 and Figure S3).
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4. Discussion

The findings from this study provide compelling evidence that variability in genes
involved in DNA repair is associated with cognitive function and, to a lesser extent, with
brain structure. Indeed, whether investigating associations between the genetic variability
of selected genes and cognitive function in univariate or multivariate analyses or when
considering their combined effect in a risk index or through latent class analysis, consistent
results emerged. Importantly, this was in spite of a very stringent statistical correction
(Bonferroni) being applied.

In univariate analyses, which tested each variant individually, all but two SNPs were
significantly associated with cognitive performance, with five suggestive of a protective
effect and three of a harmful effect. By contrast, in multi-variate analyses, which tested
all variants found to have significant associations in univariate analyses, significant asso-
ciations after model reduction were only found for eight SNPs, with three suggestive of
a protective effect and four of a harmful effect. Where sufficient variance was available
to detect an allele dose effect, the presence of two alleles was generally associated with a
greater effect ranging in magnitude between 27.5% and 355.7% in multivariate analyses.
These effects were predominantly observed with the matching task and fluid intelligence
measures. This was not unexpected for the matching task since it has the greatest range and
was available for the largest sample size. However, the range of the fluid intelligence mea-
sure was much narrower, and the strong associations detected suggest that the variability in
DNA repair mechanisms might have an influence on a broad range of cognitive processes.

The strongest and most consistent associations were detected with SNPs of the NEIL1
(rs7402844), NEIL2 (rs6601606), and NTHL1 (rs2516739) genes, which also displayed an
allele dose effect. This is interesting because a role for BER in cognitive function has
been reported both in rodents and humans. In mice, the loss of NEIL1 causes deficits in
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olfactory function and short-term spatial memory retention. By contrast, Neil1−/−Neil2−/−-
deficient animals display hyperactivity, reduced anxiety, and improved learning [34–36].
Moreover, NEIL1 deficiency impairs the survival of newly generated hippocampal neurons
and memory performance in young adult male mice [37]. In humans, NEIL1 SNPs have
been associated with late-onset Alzheimer’s disease [38], and NEIL1 gene expression is
down-regulated in the lymphocytes of AD patients [39].

Additional analyses aimed at determining whether there were synergetic effects
between pairs of SNPs found some support for this hypothesis for NEIL2: rs6601606 and
OGG1: rs1052133, and NEIL2: rs6601606 and NTHL1: rs2516739. Other SNPs tended to have
an additive effect if they were both labeled as protective or both labeled as harmful and
a subtractive effect otherwise. Such incremental effects were further demonstrated when
genes implicated in significant associations were combined in a risk index. Indeed, having
a larger risk index was also associated with lower cognitive performance, particularly at
older ages.

Given the high statistical power afforded by the very large sample size used in this
study, it is important to critically consider the practical importance of these findings, as it
is widely recognized that statistical significance is not equivalent to functional relevance
in a broader context. While effect sizes varied substantially across the genes implicated
in significant associations, compared to individuals who did not carry particular SNPs,
those who carried one allele had absolute differences in cognitive function ranging from
<1% to 5% both in univariate and multivariate analyses. Similarly, the synergetic effects
detected between pairs of genes were associated with a difference in function ranging from
~2% to 6% in those who had one allele of each SNP compared to none. These are very
substantial differences, particularly when considering the measurement noise inherent to
such epidemiological studies.

To further establish whether influential SNPs cluster in the same individuals and,
thus, potentially lead to even more potent effects, we conducted a latent class analysis on
12 SNPs for which significant differences were detected in prior analyses. The LCA yielded
two classes, which were almost exclusively defined by the presence of variants in three
SNPs of the NEIL3 gene in the second, smaller class. The association between class and
cognition varied by age and sex, such that belonging to the second class was associated with
the greatest difference in fluid intelligence (−4.1%) in middle-aged women. In contrast,
associations in men and in older individuals, while following the same direction, were
weaker. The origin of this age and sex difference is unclear. A possible explanation is
that the three variants, all belonging to NEIL3, which discriminate between class 1 and
class 2, somehow interact with female sex hormones. Intriguingly, a recent study [40] in
an Alzheimer mouse model deficient for NEIL3 showed an age-dependent decrease in
amyloid β plaque deposition in females, which was not observed in males and which was
not attributable to increased DNA damage as similar levels were observed in the two sexes.
This study did not investigate the NEIL3 variants but may suggest that the efficiency in
this gene somehow interacts with female sex hormones to influence cognitive function.

Importantly, the findings discussed above were not only observed in relation to
cognitive function but also, to a lesser extent, with brain volumes. A three-way interaction
between age, sex, and the risk index indicated that while increasing risk has minimal
associations with hippocampal and grey matter volume in middle-aged participants, it
contributes to stronger associations and different directions in older men and women.
It is not clear why a higher risk is associated with larger volumes in older women and
lower volumes in older men. Increases in volumes at older ages have been reported
in previous research, including in post-menopausal women [31], and it may reflect the
increased neuroinflammation that precedes neurodegeneration [41]. This explanation
is also consistent with our findings, indicating that greater risk at all ages and in both
sexes is associated with lower cognitive performance. Interestingly, recent research has
demonstrated that the expression of a number of BER glycosylases (NEIL1, NEIL2, OGG1,
and NTH1) varies in the brain by age and region [27]. Moreover, ROS production also



Genes 2024, 15, 153 13 of 15

appears to differ across brain regions [24]. Thus, age- and regions-specific variation in OS
and DNA repair may explain varying patterns of associations with brain volumes and
cognitive functions with increasing age.

Limitations

This study has several strengths as well as limitations. The very large sample size
ensured that sufficient statistical power was available to detect small effects and made
it possible to test complex interactions. However, it should be noted that sample sizes
were substantially reduced for brain analyses, which could explain the presence of weaker
associations with brain volumes. Another strength is that SNPs were selected a priori
based on past research, implicating them in ageing-related processes, and analyses were
robustly controlled for multiple comparisons, thus substantially reducing the risk of a type
1 error. However, only a relatively small number of SNPs, which were easily available in
the UKB data library, could be investigated. Therefore, well-resourced future investigations
should aim to extract relevant SNPs directly from whole-genome data to extend the present
findings. In addition, while the UKB is broadly representative of the UK population, it may
not be reflective of other world regions and ethnicities, and, therefore, the generalization of
the present findings should be considered with caution. As always, correlational research
such as this one cannot infer causation.

5. Conclusions

The present findings provide convincing evidence that the variability in genes im-
plicated in DNA repair, particularly NEIL1, NEIL2, NTHL1, and OGG1, are associated
with cognitive function and brain structure in ageing. These effects are substantial, as
variants were found to be associated with up to 6% differences in the performance of a
pair-matching task. This suggests that the variants investigated moderate the efficiency of
DNA repair mechanisms coded by BER genes. These differences in efficiency may lead to
the differential accumulation of DNA damage in brain cells and cause mutations in genes
important for brain function, which ultimately could impact individuals’ cognitive function
and the underlying brain structure to varying degrees. However, the exact mechanisms
involved are unknown and warrant further investigation. These findings are particularly
important because the variants investigated are not rare, with the most influential ones
being present in between 3% and 40% of the population studied. There is, therefore, a
pressing need for large-scale, holistic investigations of the various roles in DNA repair
and other related mechanisms that contribute to heterogeneous ageing trajectories, as well
as a functional analysis of the variants in DNA repair genes that affect cognition. Future
research should also aim to clarify how differences in the efficiency of DNA repair interact
with environmental exposures, with a particular focus on modifiable lifestyle and health
risk factors, as a better understanding of their independent and synergetic effects is likely to
provide important insights that may inform the prevention and identification of individuals
at risk and the development of new pharmaceuticals.
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